Share:


Identifying and prioritizing cost reduction solutions in the supply chain by integrating value engineering and gray multi-criteria decision-making

    Jalil Heidary Dahooie   Affiliation
    ; Seyyed Jalaladdin Hosseini Dehshiri   Affiliation
    ; Audrius Banaitis   Affiliation
    ; Arūnė Binkytė-Vėlienė   Affiliation

Abstract

Value engineering is an appropriate policy for creating and improving value, which reduces unnecessary costs and maintains core functionality. Despite the mentioned benefits, this approach has so far received little attention in the area of supply chain management. Although this approach is highly structured, limitations such as overemphasizing the cost criterion and failure to meet other criteria, utilizing team members’ votes to rank solutions, ignoring inherent uncertainty and ultimately disagreement between value engineering team members have reduced the effectiveness of this approach. The present study aims to provide a coherent framework for utilizing a value engineering approach to supply chain cost management and overcome the aforementioned limitations by utilizing gray multi-criteria decision-making. In this regard, in the first phase, the initial list of improvement solutions is determined, the criteria extracted from the literature are localized using value engineering team members’ opinion. These criteria are weighted using the gray stepwise weight assessment ratio analysis (SWARA-Gray) method. Then, the score of each solution is calculated by the value engineering team based on the list of criteria as a gray number. The scores are aggregated using the gray evaluation based on distance from average solution (EDAS-Gray) method, and the solutions are prioritized. Finally, the application of the proposed framework is investigated in a real case study in a power plant in Iran. The results of the research show that the final rankings of the solutions rarely changed for different methods; so the model used in this study has acceptable stability.


First published online 24 September 2020

Keyword : value engineering, SWARA-Gray, EDAS-Gray, supply chain, cost reduction solutions

How to Cite
Heidary Dahooie, J., Hosseini Dehshiri, S. J., Banaitis, A., & Binkytė-Vėlienė , A. (2020). Identifying and prioritizing cost reduction solutions in the supply chain by integrating value engineering and gray multi-criteria decision-making. Technological and Economic Development of Economy, 26(6), 1311-1338. https://doi.org/10.3846/tede.2020.13534
Published in Issue
Nov 17, 2020
Abstract Views
3022
PDF Downloads
1836
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2014). Sales branches performance evaluation: a multiple attribute decision making approach. In 8th International Scientific Conference “Business and Management” 2014 (pp. 1–7). VGTU Press. https://doi.org/10.3846/bm.2014.001

Al-Aomar, R., & Weriakat, D. (2012). A framework for a green and lean supply chain: A construction project application. In International Conference on Industrial Engineering and Operations Management Istanbul (pp. 289–299). http://iieom.org/ieom2012/pdfs/77.pdf

Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., & Banaitis, A. (2020). A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. International Journal of Sustainable Development and World Ecology, 1–18. https://doi.org/10.1080/13504509.2020.1793424

Annappa, C. M., & Panditrao, K. S. (2012). Application of value engineering for cost reduction-a case study of universal testing machine. International Journal of Advances in Engineering & Technology, 4(1), 618–629. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.8337&rep=rep1&type=pdf

Assaf, S., Jannadi, O. A., & Al-Tamimi, A. (2000). Computerized system for application of value engineering methodology. Journal of Computing in Civil Engineering, 14(3), 206–214. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:3(206)

Azadeh, A., Haghnevis, M., & Khodadadegan, Y. (2009). An improved model for production systems with mixed queuing priorities: an integrated simulation, AHP and Value Engineering approach. International Journal of Industrial and Systems Engineering, 4(5), 536–553. https://doi.org/10.1504/IJISE.2009.024157

Azevedo, S. G., Carvalho, H., & Cruz-Machado, V. (2011). A proposal of LARG supply chain management practices and a performance measurement system. International Journal of e-Education, e-Business, e-Management and e-Learning, 1(1), 7–14. https://doi.org/10.7763/IJEEEE.2011.V1.2

Azevedo, S. G., Carvalho, H., & Machado, V. C. (2010). The influence of larg supply chain management practices on manufacturing supply chain performance. Context, 3(25), 26–27.

Bai, C., & Sarkis, J. (2018). Evaluating complex decision and predictive environments: the case of green supply chain flexibility. Technological and Economic Development of Economy, 24(4), 1630–1658. https://doi.org/10.3846/20294913.2018.1483977

Barak, S., & Dahooei, J. H. (2018). A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation. Journal of Air Transport Management, 73, 134–149. https://doi.org/10.1016/j.jairtraman.2018.09.001

Baušys, R., Juodagalvienė, B., Žiūrienė, R., Pankrašovaitė, I., Kamarauskas, J., Usovaitė, A., & Gaižauskas, D. (2020). The residence plot selection model for family house in Vilnius by neutrosophic WASPAS method. International Journal of Strategic Property Management, 24(3), 182–196. https://doi.org/10.3846/ijspm.2020.12107

Beheshti, H. M. (2004). Gaining and sustaining competitive advantage with activity based cost management system. Industrial Management & Data Systems, 104(5), 377–383. https://doi.org/10.1108/02635570410537462

Behncke, F. G., Maisenbacher, S., & Maurer, M. (2014). Extended model for integrated value engineering. Procedia Computer Science, 28, 781–788. https://doi.org/10.1016/j.procs.2014.03.093

Bielinskas, V., Burinskienė, M., & Podviezko, A. (2018). Choice of abandoned territories conversion scenario according to MCDA methods. Journal of Civil Engineering and Management, 24(1), 79–92. https://doi.org/10.3846/jcem.2018.303

Bock, S., & Pütz, M. (2017). Implementing Value Engineering based on a multidimensional qualityoriented control calculus within a Target Costing and Target Pricing approach. International Journal of Production Economics, 183, 146–158. https://doi.org/10.1016/j.ijpe.2016.09.007

Bowen, P., Edwards, P., Cattell, K., & Jay, I. (2010a). The awareness and practice of value management by South African consulting engineers: Preliminary research survey findings. International Journal of Project Management, 28(3), 285–295. https://doi.org/10.1016/j.ijproman.2009.07.001

Bowen, P., Jay, I., Cattell, K., & Edwards, P. (2010b). Value management awareness and practice by South African architects: an empirical study. Construction Innovation, 10(2), 203–222. https://doi.org/10.1108/14714171011037192

Browning, T. R. (2000). Value-based product development: refocusing lean. In Proceedings of the 2000 IEEE Engineering Management Society. EMS-2000 (Cat. No. 00CH37139) (pp. 168–172). IEEE. https://doi.org/10.1109/ems.2000.872495

Buckley, P. J. (2009). The impact of the global factory on economic development. Journal of World Business, 44(2), 131–143. https://doi.org/10.1016/j.jwb.2008.05.003

Cabral, I., Grilo, A., & Cruz-Machado, V. (2012). A decision-making model for lean, agile, resilient and green supply chain management. International Journal of Production Research, 50(17), 4830–4845. https://doi.org/10.1080/00207543.2012.657970

Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360–387 https://doi.org/10.1108/09600030810882816

Carvalho, H., & Azevedo, S. (2014). Trade-offs among lean, agile, resilient and green paradigms in supply chain management: a case study approach. In Proceedings of the seventh international conference on management science and engineering management (pp. 953–968). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40081-0_81

Carvalho, H., & Cruz-Machado, V. (2011). Integrating lean, agile, resilience and green paradigms in supply chain management (LARG_SCM). In Supply Chain Management. InTech. https://doi.org/10.5772/14592

Carvalho, H., Azevedo, S. G., & Cruz-Machado, V. (2010). Supply chain performance management: Lean and green paradigms. International Journal of Business Performance and Supply Chain Modelling, 2(3–4), 304–333. https://doi.org/10.1504/IJBPSCM.2010.036204

Carvalho, H., Duarte, S., & Cruz Machado, V. (2011). Lean, agile, resilient and green: divergencies and synergies. International Journal of Lean Six Sigma, 2(2), 151–179. https://doi.org/10.1108/20401461111135037

Chatterjee, K., Pamucar, D., & Zavadskas, E. K. (2018). Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production, 184, 101–129. https://doi.org/10.1016/j.jclepro.2018.02.186

Chen, W. T., Chang, P. Y., & Huang, Y. H. (2010). Assessing the overall performance of value engineering workshops for construction projects. International Journal of Project Management, 28(5), 514–527. https://doi.org/10.1016/j.ijproman.2009.08.005

Chopra, S., & Meindl, P. (2013). Supply chain management: Strategy, planning, and operation-5/E. Pearson India.

Corbett, C. J., & Klassen, R. D. (2006). Extending the horizons: Environmental excellence as key to improving operations. Manufacturing & Service Operations Management, 8(1), 5–22. https://doi.org/10.1287/msom.1060.0095

Davis, S. M. (1997). Bringing innovation to life. Journal of Consumer Marketing, 14(5), 338–361. https://doi.org/10.1108/07363769710179383

Dehnavi, A., Aghdam, I. N., Pradhan, B., & Varzandeh, M. H. M. (2015). A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, 135, 122–148. https://doi.org/10.1016/j.catena.2015.07.020

Dell’Isola, A. J. (1982). Value engineering in the construction industry. Van Nostrand Reinhold.

Deng, J. L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/S0167-6911(82)80025-X

Dorvil, M., & Benjamin, C. O. (2002). Value engineering in supply chain management. In Proceedings of the 5th Biannual World Automation Congress, 14, 169–174. IEEE. https://doi.org/10.1109/WAC.2002.1049438

Elgazzar, S. H., Tipi, N. S., Hubbard, N. J., & Leach, D. Z. (2012). Linking supply chain processes’ performance to a company’s financial strategic objectives. European Journal of Operational Research, 223(1), 276–289. https://doi.org/10.1016/j.ejor.2012.05.043

Ellis, R. C., Wood, G. D., & Keel, D. A. (2005). Value management practices of leading UK cost consultants. Construction Management and Economics, 23(5), 483–493. https://doi.org/10.1080/01446190500040711

El-Nashar, W. Y. (2017). Effect of drains coverings on environment by using value engineering. Alexandria Engineering Journal, 56(3), 327–332. https://doi.org/10.1016/j.aej.2017.05.013

Fan, Q., Xu, X., & Gong, Z. (2007). Research on lean, agile and leagile supply chain. In 2007 International Conference on Wireless Communications, Networking and Mobile Computing, (pp. 4902–4905). IEEE. https://doi.org/10.1109/WICOM.2007.1201

Fan, S., Shen, Q., & Kelly, J. (2008). Using group decision support system to support value management workshops. Journal of Computing in Civil Engineering, 22(2), 100–113. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:2(100)

Fong, P. S. W. (2004). A critical appraisal of recent advances and future directions in value management. European Journal of Engineering Education, 29(3), 377–388. https://doi.org/10.1080/03043790410001663292

Fong, P. S. W., Hills, M. J., & Hayles, C. S. (2007). Dynamic knowledge creation through value management teams. Journal of Management in Engineering, 23(1), 40–49. https://doi.org/10.1061/(ASCE)0742-597X(2007)23:1(40)

Gandhinathan, R., Raviswaran, N., & Suthakar, M. (2004). QFD-and VE-enabled target costing: a fuzzy approach. International Journal of Quality & Reliability Management, 21(9), 1003–1011. https://doi.org/10.1108/02656710410561817

Govindan, K., Azevedo, S. G., Carvalho, H., & Cruz-Machado, V. (2015). Lean, green and resilient practices influence on supply chain performance: Interpretive structural modeling approach. International Journal of Environmental Science and Technology, 12(1), 15–34. https://doi.org/10.1007/s13762-013-0409-7

Green, S. D. (1994). Beyond value engineering: SMART value management for building projects. International Journal of Project Management, 12(1), 49–56. https://doi.org/10.1016/0263-7863(94)90009-4

Gunasekaran, A., Laib, K., & Cheng, T. C. E. (2008). Responsive supply chain: A competitive strategy in a networked economy. Omega, 36(4), 549–564. https://doi.org/10.1016/j.omega.2006.12.002

Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1/2), 71–87. https://doi.org/10.1108/01443570110358468

Hashemkhani Zolfani, S., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Inzinerine Ekonomika-Engineering Economics, 24(5), 408–414. https://doi.org/10.5755/j01.ee.24.5.4526

Hashemkhani Zolfani, S., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., & Varzandeh, M. H. M. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications, 40(17), 7111–7121. https://doi.org/10.1016/j.eswa.2013.06.040

Hashemkhani Zolfani, S., Yazdani, M., & Zavadskas, E. K. (2018). An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Computing, 22(22), 7399–7405. https://doi.org/10.1007/s00500-018-3092-2

Heidary Dahooie, J., Vanaki, A. S., Daneshmoghadam, S., & Zavadskas, E. K. (2020). A framework to overcome hesitancy of decision-makers in e-government web site evaluation. International Journal of Fuzzy Systems, 22, 583–603. https://doi.org/10.1007/s40815-019-00790-z

Heidary Dahooie, J., Zavadskas, E. K., Firoozfar, H. R., Vanaki, A. S., Mohammadi, N., & Brauers, W. K. M. (2019). An improved fuzzy MULTIMOORA approach for multi-criteria decision making based on objective weighting method (CCSD) and its application to technological forecasting method selection. Engineering Applications of Artificial Intelligence, 79, 114–128. https://doi.org/10.1016/j.engappai.2018.12.008

Ibusuki, U., & Kaminski, P. C. (2007). Product development process with focus on value engineering and target-costing: A case study in an automotive company. International Journal of Production Economics, 105(2), 459–474. https://doi.org/10.1016/j.ijpe.2005.08.009

Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175(2), 1375–1384. https://doi.org/10.1016/j.amc.2005.08.048

Jasti, N. V. K., & Kodali, R. (2015). A critical review of lean supply chain management frameworks: Proposed framework. Production Planning & Control, 26(13), 1051–1068. https://doi.org/10.1080/09537287.2015.1004563

Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting – A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155–161. https://doi.org/10.1016/j.eswa.2016.01.042

Karabasevic, D., Zavadskas, E. K., Stanujkic, D., Popovic, G., & Brzakovic, M. (2018). An approach to personnel selection in the IT industry based on the EDAS method. Transformations in Business and Economics, 17(2), 55–65.

Kelly, J. (2007). Making client values explicit in value management workshops. Construction Management and Economics, 25(4), 435–442. https://doi.org/10.1080/01446190601071839

Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2018). A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Archives of Civil and Mechanical Engineering, 18(1), 32–49. https://doi.org/10.1016/j.acme.2017.04.011

Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. International Journal of Computers Communications & Control, 11(3), 358–371. https://doi.org/10.15837/ijccc.2016.3.2557

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57

Kildienė, S., Kaklauskas, A., & Zavadskas, E. K. (2011). COPRAS based comparative analysis of the European country management capabilities within the construction sector in the time of crisis. Journal of Business Economics and Management, 12(2), 417–434. https://doi.org/10.3846/16111699.2011.575190

Kumar, A., Moktadir, A., Liman, Z. R., Gunasekaran, A., Hegemann, K., & Rehman Khan, S. A. (2020a). Evaluating sustainable drivers for social responsibility in the context of ready-made garments supply chain. Journal of Cleaner Production, 248, 119231. https://doi.org/10.1016/j.jclepro.2019.119231

Kumar, A., Moktadir, M. A., Khan, S. A. R., Garza-Reyes, J. A., Tyagi, M., & Kazançoğlu, Y. (2020b). Behavioral factors on the adoption of sustainable supply chain practices. Resources, Conservation and Recycling, 158, 104818. https://doi.org/10.1016/j.resconrec.2020.104818

Kumar, A., Zavadskas, E. K., Mangla, S. K., Agrawal, V., Sharma, K., & Gupta, D. (2019). When risks need attention: adoption of green supply chain initiatives in the pharmaceutical industry. International Journal of Production Research, 57(11), 3554–3576. https://doi.org/10.1080/00207543.2018.1543969

Li, Z., Wei, G., Wang, R., Wu, J., Wei, C., & Wei, Y. (2020). EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Technological and Economic Development of Economy, 26(1), 86–102. https://doi.org/10.3846/tede.2019.11333

Lin, G., Shen, G. Q., Sun, M., & Kelly, J. (2011). Identification of key performance indicators for measuring the performance of value management studies in construction. Journal of Construction Engineering and Management, 137(9), 698–706. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000348

MacCrimmon, K. R. (1968). Decisionmaking among multiple-attribute alternatives: a survey and consolidated approach (No. RM-4823-ARPA). Rand Corp. Santa Monica CA.

Mahdi, I. M., Heiza, K. M., & Elenen, N. E. (2015). State of the art review on application of value engineering on construction projects: High rise building. International Journal of Innovative Research in Science, Engineering and Technology, 1.

Maleki, M., & Machado, V. C. (2013). Generic integration of lean, agile, resilient, and green practices in automotive supply chain. Revista de Management Comparat International/Review of International Comparative Management, 14(2), 237–248.

Manzouri, M., & Rahman, M. N. A. (2013). Adaptation of theories of supply chain management to the lean supply chain management. International Journal of Logistics Systems and Management, 14(1), 38–54. https://doi.org/10.1504/IJLSM.2013.051019

Marzouk, M. M. (2011). ELECTRE III model for value engineering applications. Automation in Construction, 20(5), 596–600. https://doi.org/10.1016/j.autcon.2010.11.026

Mavi, R. K., Zarbakhshnia, N., & Khazraei, A. (2018). Bus rapid transit (BRT): A simulation and multi criteria decision making (MCDM) approach. Transport Policy, 72, 187–197. https://doi.org/10.1016/j.tranpol.2018.03.010

Nascimento, D. L. M., Quelhas, O. L. G., Meiriño, M. J., Caiado, R. G. G., Barbosa, S. D. J., & Ivson, P. (2018). Facility Management using digital Obeya Room by integrating BIM-Lean approaches – an empirical study. Journal of Civil Engineering and Management, 24(8), 581–591. https://doi.org/10.3846/jcem.2018.5609

Nucciarelli, A., Li, F., Fernandes, K. J., Goumagias, N., Cabras, I., Devlin, S., Kudenko, D., & Cowling, P. (2017). From value chains to technological platforms: The effects of crowdfunding in the digital game industry. Journal of Business Research, 78, 341–352. https://doi.org/10.1016/j.jbusres.2016.12.030

Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5–21.

Pan, W., Jian, L., & Liu, T. (2019). Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization. Scientometrics, 121(3), 1407–1434. https://doi.org/10.1007/s11192-019-03256-z

Rachwan, R., Abotaleb, I., & Elgazouli, M. (2016). The influence of value engineering and sustainability considerations on the project value. Procedia Environmental Sciences, 34, 431–438. https://doi.org/10.1016/j.proenv.2016.04.038

Shen, G., & Yu, A. T. (2012). Value management: Recent developments and way forward. Construction Innovation, 12(3), 264–271. https://doi.org/10.1108/14714171211244631

Stanujkic, D., Karabasevic, D., & Zavadskas, E. K. (2015). A framework for the selection of a packaging design based on the SWARA method. Inzinerine Ekonomika-Engineering Economics, 26(2), 181–187. https://doi.org/10.5755/j01.ee.26.2.8820

Stanujkic, D., Zavadskas, E. K., Keshavarz Ghorabaee, M., & Turskis, Z. (2017). An extension of the EDAS method based on the use of interval grey numbers. Studies in Informatics and Control, 26(1), 5–12. https://doi.org/10.24846/v26i1y201701

Stević, Ž., Vasiljević, M., Puška, A., Tanackov, I., Junevičius, R., & Vesković, S. (2019). Evaluation of suppliers under uncertainty: a multiphase approach based on fuzzy AHP and fuzzy EDAS. Transport, 34(1), 52–66. https://doi.org/10.3846/transport.2019.7275

Su, T. Y., & Lei, X. H. (2008). Research on supply chain cost reduction based on process and time analysis. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1625–1629). https://doi.org/10.1109/IEEM.2008.4738147

Surlan, N., Cekic, Z., & Torbica, Z. (2016). Use of value management workshops and critical success factors in introducing local experience on the international construction projects. Journal of Civil Engineering and Management, 22(8), 1021–1031. https://doi.org/10.3846/13923730.2014.945950

Tohidi, H. (2011). Review the benefits of using value engineering in information technology project management. Procedia Computer Science, 3, 917–924. https://doi.org/10.1016/j.procs.2010.12.150

Turskis, Z., & Zavadskas, E. K. (2010). A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21(4), 597–610. https://doi.org/10.15388/Informatica.2010.307

Valipour, A., Yahaya, N., Noor, N. M., Valipour, I., & Tamošaitienė, J. (2019). A SWARA-COPRAS approach to the allocation of risk in water and sewerage public–private partnership projects in Malaysia. International Journal of Strategic Property Management, 23(4), 269–283. https://doi.org/10.3846/ijspm.2019.8066

Wao, J., & MQSI, S. (2015). A review of the value engineering methodology: Limitations and solutions for sustainable construction. In 55th SAVE International Annual Conference: SAVE Value Summit, (pp. 7–9).

Wu, H. H. (2006). Applying grey model to prioritise technical measures in quality function deployment. The International Journal of Advanced Manufacturing Technology, 29(11–12), 1278–1283. https://doi.org/10.1007/s00170-005-0016-y

Yazdani, M., Wen, Z., Liao, H., Banaitis, A., & Turskis, Z. (2019). A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. Journal of Civil Engineering and Management, 25(8), 858–874. https://doi.org/10.3846/jcem.2019.11309

Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage Publications. https://doi.org/10.4135/9781412985161

Zarandi, M. H. F., Razaee, Z. S., & Karbasian, M. (2011). A fuzzy case based reasoning approach to value engineering. Expert Systems with Applications, 38(8), 9334–9339. https://doi.org/10.1016/j.eswa.2011.01.124

Zavadskas, E. K., Stević, Ž., Turskis, Z., & Tomasević, M. (2019). A novel extended EDAS in Minkowski space (EDAS-M) method for evaluating autonomous vehicles. Studies in Informatics and Control, 28(3), 255–264. https://doi.org/10.24846/v28i3y201902

Zavadskas, E. K., Vilutiene, T., Turskis, Z., & Tamosaitiene, J. (2010). Contractor selection for construction works by applying SAW‐G and TOPSIS grey techniques. Journal of Business Economics and Management, 11(1), 34–55. https://doi.org/10.3846/jbem.2010.03

Zengin, Y., & Ada, E. (2010). Cost management through product design: target costing approach. International Journal of Production Research, 48(19), 5593–5611. https://doi.org/10.1080/00207540903130876

Zhang, S., Wei, G., Gao, H., Wei, C., & Wei, Y. (2019). EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections. Technological and Economic Development of Economy, 25(6), 1123–1138. https://doi.org/10.3846/tede.2019.10714

Zhang, X., Mao, X., & AbouRizk, S. M. (2009). Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18(6), 777–789. https://doi.org/10.1016/j.autcon.2009.03.004