Share:


Does forest disturbance matter to climate degradation? Evidence from top Asian Economies

Abstract

The main purpose of this study was to examine the relationship between forestry and climate degradation in the modern era. Specifically, the study aimed to examine how forest areas are influencing environmental degradation. Given the inevitable link between forests and carbon dioxide (CO2), the current study focused on examining the impact of changes in forestry on the levels of CO2 emissions in top Asian economies, including China, India, Indonesia, Malaysia, and Thailand. To this end, the current study was quantitative in nature and utilized advanced methodology such as econometrics of quantile-on-quantile (Q-Q) regression to investigate the forests-environmental degradation link. In particular, we examined the effect of quantiles of forest areas on the quantile of climate change in top Asian economies using the time series data from 1990 to 2018. The findings confirmed that forest areas have a negative and significant impact on climate degradation in the majority of the groups of quantiles for all countries. Therefore, this study highlights the importance of forests in controlling environmental degradation in Asian economies. Lastly, the study recommends the respective government bodies to intervene and provide assistance in environmental initiatives to improve forestry levels.


First published online 09 February 2021

Keyword : forestry, climate degradation, Asia, quantile-on-quantile regression

How to Cite
Haseeb, M., Staniewski, M., Mihardjo, L. W. W., & Awruk, K. (2021). Does forest disturbance matter to climate degradation? Evidence from top Asian Economies. Technological and Economic Development of Economy, 27(3), 583-601. https://doi.org/10.3846/tede.2021.14254
Published in Issue
May 25, 2021
Abstract Views
736
PDF Downloads
594
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abbas, S. A., Xuan, Y., & Song, X. (2019). Quantile regression based methods for investigating rainfall trends associated with flooding and drought conditions. Water Resources Management, 33, 4249– 4264. https://doi.org/10.1007/s11269-019-02362-0

Agrawala, S. (1998). Structural and process history of the Intergovernmental Panel on Climate Change. Climatic Change, 39(4), 621–642. https://doi.org/10.1023/A:1005312331477

Aleem, U. (2020). Perceptions of teachers regarding literacy drive policy for teaching and learning of English language skills and its implementational effectiveness. Hamdard Islamicus, 43(2), 276–295.

Alhbaby, A. A. M. (2020). Insistence in the pre-Islamic poetry a study of motives and causes. Hamdard Islamicus, 43(3), 28–50.

Ali, M. M., Yasmin, T., Kazi, A. S., Mahmood, M. A., & Shahid, A. (2020). Evaluating the multiple choice questions of higher secondary school English through item analysis. Hamdard Islamicus, 43(2), 897–931.

Al-Blooshi, H., Al-Shami, S. A., & Sidek, S. (2020). Mobile health and users demographic characteristics and preferences. A case study from the UAE. Systematic Reviews in Pharmacy, 11(12), 143–149.

Al-Husseini, R. M. A. H. (2020). Impact of interleukin-1 beta gene allelic polymorphisms in diabetic and non-diabetic hemodialysis Iraqi patients. Systematic Reviews in Pharmacy, 11(12), 63–69.

Al-Tufaili, R. A. N. (2020). Evaluation of commercial Linked immune-sorbent assay (ELISA) for detecting sero-prevalence of Toxoplasma gondii antibodies in Iraqi women. Systematic Reviews in Pharmacy, 11(12), 57–62.

Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E., Margolis, H. A., Martin, T., McCaughey, J. H., Misson, L., Montes-Helu, M., Noormets, A., Randerson, J. T., Starr, G., & Xiao, J. (2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences, 115(G4), 1–13. https://doi.org/10.1029/2010JG001390

Baccini, A. G. S. J., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182–193. https://doi.org/10.1038/nclimate1354

Banelienė, R., & Melnikas, B. (2020). Economic growth and investment in R&D: Contemporary challenges for the European Union. Contemporary Economics, 14(1), 38–57. https://doi.org/10.5709/ce.1897-9254.331

Batool, R., Sharif, A., Islam, T., Zaman, K., Shoukry, A. M., Sharkawy, M. A., Gani, S., Amir, A., & Hishan, S. S. (2019). Green is clean: The role of ICT in resource management. Environmental Science and Pollution Research, 26(24), 25341–25358. https://doi.org/10.1007/s11356-019-05748-0

Beaty, N. (2019, April 19). Does forest area within countries mitigate carbon dioxide levels? [Panel presentation]. COLA Research and Creativity Conference, Marshall University, Huntington VW, United States.

Bennett, L. (2017). Deforestation and climate change. The Climate Institute. http://climate.org/wp-content/uploads/2017/04/deforestation-final_r1.pdf

Bullock, E. L., Woodcock, C. E., Souza Jr, C., & Olofsson, P. (2020). Satellite‐based estimates reveal widespread forest degradation in the Amazon. Global Change Biology, 26(5), 2956–2969. https://doi.org/10.1111/gcb.15029

Chazdon, R., & Brancalion, P. (2019). Restoring forests as a means to many ends. Science, 365(6448), 24–25. https://doi.org/10.1126/science.aax9539

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1979.10481038

Cramer, W., Bondeau, A., Schaphoff, S., Lucht, W., Smith, B., & Sitch, S. (2004). Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1443), 331–343. https://doi.org/10.1098/rstb.2003.1428

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 1108–1111. https://doi.org/10.1126/science.aau3445

Chena, P. I., Panigo, D. T., & Zorba, G. (2020). Beyond goodwin: Financialization as a structural change to explain the new Argentinian crisis. Cuadernos de Economía, 39(80), 523–540. https://doi.org/10.15446/cuad.econ.v39n80.84163

Chen, L., Zhen, J., Dong, K., & Xie, Z. (2020a). Effects of sanction on the mentality of information security policy compliance. Revista Argentina de Clinica Psicologica, 29(1), 39–49. https://doi.org/10.24205/03276716.2020.6

Chen, M., & Gao, X. (2020). Psychological mechanism between impression management and compulsory citizenship behavior of employees. Revista Argentina de Clinica Psicologica, 29(1), 141–148. https://doi.org/10.24205/03276716.2020.18

Chen, Qisheng, Li, X., Wang, J., Liu, K., & Li, L. (2020b). Psychological perception-based analysis on the influence of entrepreneurship education on entrepreneurial intention. Revista Argentina de Clinica Psicologica, 29(1), 117–130. https://doi.org/10.24205/03276716.2020.16

Cómbita Mora, G. (2020). Structural change and financial fragility in the Colombian business sector: A post Keynesian approach. Cuadernos de Economía, 39(spe80), 567–594. https://doi.org/10.15446/cuad.econ.v39n80.82562

Delacote, P. (2012). Forests and development: Local, national and global issues. Taylor & Francis. https://doi.org/10.4324/9780203117521

Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2019). Global Climate Risk Index 2020. Who suffers most from extreme weather events? Weather-related loss events in 2018 and 1999 to 2018. www.germanwatch.org/en/cri

Espinosa-Espinosa, A., Madero-Jirado, M., Rodríguez-Puello, G., & Díaz-Canedo, L. C. (2020). Ethnicity, space and human development in poor urban communities: Commune 6 in Cartagena de Indias. Colombia. Cuadernos de Economía, 39(81), 635–665. https://doi.org/10.15446/cuad.econ.v39n81.77333

Food and Agriculture Organization of the United Nations. (2018). Seventy years of FAO’s Global Forest Resources Assessment. Food and Agriculture Organization of the United National.

Grdic, Z. S., Gregoric, M., & Nizic, M. K. (2019). Investigating the influence of tourism on economic growth and climate change-the case of Croatia. Contemporary Economics, 13(2), 111–123.

Hornung, J. J. (2020). Comments on “Ornitocheirus hilsensis” Koken, 1883 – One of the earliest dinosaur discoveries in Germany. Palarch’s Journal of Vertebrate Palaeontology, 17(1), 1–12.

Hollinger, D. Y., Kelliher, F. M., Schulze, E.-D., Bauer, G., Arneth, A., Byers, J. N., Hunt, J. E., McSeveny, T. M., Kobak, K. I., Milukova, I., Sogatchev, A., Tatarinov, F., Varlargin, A., Ziegler, W., & Vygodskaya, N. N. (1998). Forest–atmosphere carbon dioxide exchange in eastern Siberia. Agricultural and Forest Meteorology, 90(4), 291–306. https://doi.org/10.1016/S0168-1923(98)00057-4

Houghton, R. A. (1991). Tropical deforestation and atmospheric carbon dioxide. In N. Myers (Ed.), Tropical forests and climate (pp. 99–118). Springer. https://doi.org/10.1007/978-94-017-3608-4_10

Hussain, H. I., Haseeb, M., Tvaronavičienė, M., Mihardjo, L. W., & Jermsittiparsert, K. (2020). The causal connection of natural resources and globalization with energy consumption in top Asian countries: Evidence from a nonparametric causality-in-quantile approach. Energies, 13(9), 2273. https://doi.org/10.3390/en13092273

Janssen, R. (2020). The pleated dress of nywty. PalArch’s Journal of Archaeology of Egypt/Egyptology, 17(1), 1–11.

Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–532. https://doi.org/10.1038/nature01675

Koenker, R., & Bassett, Jr. G. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 46(1), 33–50. https://doi.org/10.2307/1913643

Khvatskaya, E., Saganovich, E., Tiunova, O., & Ilina, N. (2020). Psikhologicheskaya korrektsiya strakhov yunykh sportsmenov v plavanii [Psychological correction of fears of young swimming athletes]. Revista de Psicología del Deporte, 29, 159–170.

Kim, A., Zvezdin, A., Rogaleva, L., & Fitina, L. (2020). Issledovanie lichnostnoy gotovnosti yunykh futbolistov k zanyatim sportom [Study of the personal readiness of young soccer players for sports activities]. Revista de Psicología del Deporte, 29, 185–192.

Lapinskienė, G., Tvaronavičienė, M., & Vaitkus, P. (2014). Greenhouse gases emissions and economic growth–evidence substantiating the presence of environmental. Kuznets curve in the EU. Technological and Economic Development of Economy, 20(1), 65–78. https://doi.org/10.3846/20294913.2014.881434

Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8), 332–337. https://doi.org/10.1016/S0169-5347(00)01906-6

McPherson, E. G. (1998). Atmospheric carbon dioxide reduction by Sacramento’s urban forest. Journal of Arboriculture, 24, 215–223.

Mishra, S., Sharif, A., Khuntia, S., Meo, S. A., & Khan, S. A. R. (2019). Does oil prices impede Islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach. Resources Policy, 62, 292–304. https://doi.org/10.1016/j.resourpol.2019.04.005

Malkin, V., Serpa, S., Garcia-mas, A., & Shurmanov, E. (2020). New paradigm in modern sports. Psychology, 29, 149–152.

Mutascu, M. I. (2014). Influence of climate conditions on tax revenues. Contemporary Economics, 8(3), 315–328. https://doi.org/10.5709/ce.1897-9254.148

Niu, D., Wang, K., Wu, J., Sun, L., Liang, Y., Xu, X., & Yang, X. (2020). Can China achieve its 2030 carbon emissions commitment? Scenario analysis based on an improved general regression neural network. Journal of Cleaner Production, 243, 118–558. https://doi.org/10.1016/j.jclepro.2019.118558

Pace, M. L., Carpenter, S. R., & Cole, J. J. (2015). With and without warning: managing ecosystems in a changing world. Frontiers in Ecology and the Environment, 13(9), 460–467. https://doi.org/10.1890/150003

Raza, S. A., Shah, N., & Sharif, A. (2019). Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy, 173, 706–720. https://doi.org/10.1016/j.energy.2019.01.077

Repo, A., Tuomi, M., & Liski, J. (2011). Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Gcb Bioenergy, 3(2), 107–115. https://doi.org/10.1111/j.1757-1707.2010.01065.x

Roggeri, P., Belward, A., Mayaux, P., Eva, H., Brink, A., Dubois, G., Peedell, S., & Leo, O. (2010). Sustainable development in developing countries: the African, Caribbean and pacific observatory. Technological and Economic Development of Economy, 16(4), 736–752. https://doi.org/10.3846/tede.2010.45

Rowntree, R. A., & Nowak, D. J. (1991). Quantifying the role of urban forests in removing atmospheric carbon dioxide. Journal of Arboriculture, 17(10), 269–275.

Seymour, F., & Busch, J. (2016). Why forests? Why now?: The science, economics, and politics of tropical forests and climate change. Brookings Institution Press.

Shahbaz, M., Mahalik, M. K., Shahzad, S. J. H., & Hammoudeh, S. (2019). Testing the globalizationdriven carbon emissions hypothesis: international evidence. International Economics, 158, 25–38. https://doi.org/10.1016/j.inteco.2019.02.002

Shahbaz, M., Zakaria, M., Shahzad, S. J. H., & Mahalik, M. K. (2018). The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Economics, 71, 282–301. https://doi.org/10.1016/j.eneco.2018.02.023

Shahzad, S. J. H., Shahbaz, M., Ferrer, R., & Kumar, R. R. (2017). Tourism-led growth hypothesis in the top ten tourist destinations: New evidence using the quantile-on-quantile approach. Tourism Management, 60, 223–232. https://doi.org/10.1016/j.tourman.2016.12.006

Sharif, A., Afshan, S., & Qureshi, M. A. (2019a). Idolization and ramification between globalization and ecological footprints: evidence from quantile-on-quantile approach. Environmental Science and Pollution Research, 26(11), 11191–11211. https://doi.org/10.1007/s11356-019-04351-7

Sharif, A., Shahbaz, M., & Hille, E. (2019b). The transportation-growth nexus in USA: Fresh insights from pre-post global crisis period. Transportation Research Part A: Policy and Practice, 121, 108– 121. https://doi.org/10.1016/j.tra.2019.01.011

Shastri, H., Paul, S., Ghosh, S., & Karmakar, S. (2015). Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres, 120(2), 496–516. https://doi.org/10.1002/2014JD022061

Sim, N., & Zhou, H. (2015). Oil prices, US stock return, and the dependence between their quantiles. Journal of Banking & Finance, 55, 1–8. https://doi.org/10.1016/j.jbankfin.2015.01.013

Sorokhtin, O. G., Chilingarian, G. V., & Sorokhtin, N. O. (2011). Evolution of earth and its climate: birth, life and death of earth. Developments in Earth and Environmental Sciences, 10, 499–502. https://doi.org/10.1016/B978-0-444-53757-7.00014-3

Stone, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics, 5, 595–620. https://doi.org/10.1214/aos/1176343886

Smith, C. C., Espírito‐Santo, F. D. B., Healey, J. R., Young, P. J., Lennox, G. D., Ferreira, J., & Barlow, J. (2020). Secondary forests offset less than 10% of deforestation‐mediated carbon emissions in the Brazilian Amazon. Global Change Biology, 26, 7006–7020. https://doi.org/10.1111/gcb.15352

Troster, V., Shahbaz, M., & Uddin, G. S. (2018). Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Economics, 70, 440–452. https://doi.org/10.1016/j.eneco.2018.01.029

Van-der-Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J., & Randerson, J. T. (2009). CO2 emissions from forest loss. Nature Geoscience, 2(11), 737–738. https://doi.org/10.1038/ngeo671

Wang, Y.-S. (2012). Threshold effects on development of tourism and economic growth. Tourism Economics, 18, 1135–1141. https://doi.org/10.5367/te.2012.0160

Xiao, Z. (2009). Quantile cointegrating regression. Journal of Econometrics, 150(2), 248–260. https://doi.org/10.1016/j.jeconom.2008.12.005

Yang, X., & Grigorescu, A. (2017). Measuring economic spatial evolutional trend of Central and Eastern Europe by SDE method. Contemporary Economics, 11(3), 253–267.

Yao, X., Wang, Z., & Wang, H. (2015). Impact of urbanization and land-use change on surface climate in middle and lower reaches of the Yangtze River, 1988–2008. Advances in Meteorology, 2015, 395094. https://doi.org/10.1155/2015/395094

Yun, C. (2020). A subadult frontal of daspletosaurus torosus (Theropoda: Tyrannosauridae) from the Late Cretaceous of Alberta, Canada with implications for Tyrannosaurid Ontogeny and Taxonomy. PalArch’s Journal of Vertebrate Palaeontology, 17(2), 1–13.

Zhan, J., Huang, J., Zhao, T., Geng, X., & Xiong, Y. (2013). Modeling the impacts of urbanization on regional climate change: a case study in the Beijing-Tianjin-Tangshan metropolitan area. Advances in Meteorology, 2013, 849479. https://doi.org/10.1155/2013/849479

Zhang, N., Gao, Z., Wang, X., & Chen, Y. (2010). Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theoretical and Applied Climatology, 102, 331–342. https://doi.org/10.1007/s00704-010-0263-1

Zhao, M., Kong, Z. H., Escobedo, F. J., & Gao, J. (2010). Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. Journal of Environmental Management, 91(4), 807–813. https://doi.org/10.1016/j.jenvman.2009.10.010

Zon, R. (1920). Forests and human progress. Geographical Review, 10(3), 139–166. https://doi.org/10.2307/207748