Share:


PDHL-EDAS method for multiple attribute group decision making and its application to 3D printer selection

    Fan Lei Affiliation
    ; Guiwu Wei Affiliation
    ; Weijie Shen Affiliation
    ; Yanfeng Guo Affiliation

Abstract

With the rapid development of 3D printing technology, 3D printers are manufactured based on the principle of 3D printing technology are more and more widely used in the manufacturing industry. Choosing high quality 3D printers for industrial production is of great significance to the economic growth of enterprises. In fact, it is difficult to select the most optimal 3D printers under a single and simple standard. Therefore, this paper establishes the probabilistic double hierarchy linguistic EDAS (PDHL-EDAS) method for the multiple attribute group decision making (MAGDM). Then the CRITIC model is introduced to derive objective weight and the cumulative prospect theory is leaded into obtain the cumulative weight of PDHLTS. In addition, what’s more, the PDHL-EDAS method is built and applied to the choice of high-quality 3D printer. Finally, compared with the available MAGDM methods under PDHLTS, the built method is proved to be scientific and effective.


First published online 15 December 2021

Keyword : multiple attribute group decision making (MAGDM), probabilistic double hierarchy linguistic term set (PDHLTS), EDAS method, CRITIC method, 3D printer selection

How to Cite
Lei, F., Wei, G., Shen, W., & Guo, Y. (2022). PDHL-EDAS method for multiple attribute group decision making and its application to 3D printer selection. Technological and Economic Development of Economy, 28(1), 179–200. https://doi.org/10.3846/tede.2021.15884
Published in Issue
Jan 12, 2022
Abstract Views
1013
PDF Downloads
751
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Cheng, Y. L., Qin, H. T., Acevedo, N. C., Jiang, X. P., & Shi, X. L. (2020). 3D printing of extended-release tablets of theophylline using hydrox-ypropyl methylcellulose (HPMC) hydrogels. International Journal of Pharmaceutics, 591, 11983. https://doi.org/10.1016/j.ijpharm.2020.119983

Chrispin, T. T. B., Takano, C. C., Fernandes, M. S., & Sartori, M. G. F. (2020). Development of vaginal devices by 3D printer for gynecological use. International Urogynecology Journal, 31, S52–S53.

Darko, A. P., & Liang, D. C. (2020). Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method. Engineering Applications of Artificial Intelligence, 87, 103259. https://doi.org/10.1016/j.engappai.2019.103259

Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Comput-ers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H

Feng, X. Q., Wei, C. P., & Liu, Q. (2018). EDAS method for extended hesitant fuzzy linguistic multi-criteria decision making. International Jour-nal of Fuzzy Systems, 20, 2470–2483. https://doi.org/10.1007/s40815-018-0504-5

Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. J. I. (2015). Multi-criteria inventory classification using a new method of Evaluation based on Distance from Average Solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57

Gou, X., Liao, H., Xu, Z., & Herrera, F. (2017). Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling measures. Information Fusion, 38, 22–34. https://doi.org/10.1016/j.inffus.2017.02.008

Gou, X., Xu, Z., Liao, H., & Herrera, F. (2021). Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare. Journal of the Operational Research Society, 72(12), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741

Gundogdu, F. K., Kahraman, C., & Civan, H. N. (2018). A novel hesitant fuzzy EDAS method and its application to hospital selection. Journal of Intelligent & Fuzzy Systems, 35(6), 6353–6365. https://doi.org/10.3233/JIFS-181172

He, Y., Lei, F., Wei, G. W., Wang, R., Wu, J., & Wei, C. (2019). EDAS method for multiple attribute group decision making with probabilistic uncertain linguistic information and its application to green supplier selection. International Journal of Computational Intelligence Systems, 12(3), 1361–1370. https://doi.org/10.2991/ijcis.d.191028.001

Karunanithi, K., Han, C., Lee, C. J., Shi, W. C., Duan, L., & Qian, Y. (2015). Identification of a hemodynamic parameter for assessing treatment outcome of EDAS in Moyamoya disease. Journal of Biomechanics, 48(2), 304–309. https://doi.org/10.1016/j.jbiomech.2014.11.029

Kundakci, N. (2019). An integrated method using MACBETH and EDAS methods for evaluating steam boiler alternatives. Journal of Mul-ti-Criteria Decision Analysis, 26(1–2), 27–34. https://doi.org/10.1002/mcda.1656

Lei, F., Wei, G., & Chen, X. (2021). Model-based evaluation for online shopping platform with probabilistic double hierarchy linguistic CODAS method. International Journal of Intelligent Systems, 36(9), 5339–5358. https://doi.org/10.1002/int.22514

Liang, W. Z., Zhao, G. Y., & Luo, S. Z. (2018). An integrated EDAS-ELECTRE method with picture fuzzy information for cleaner production evaluation in gold mines. IEEE Access, 6, 65747–65759. https://doi.org/10.1109/ACCESS.2018.2878747

Liu, Y. S., Zhang, R., Ye, H. Q., Wang, S. M., Wang, K. P., Liu, Y. S., & Zhou, Y. S. (2019). The development of a 3D colour reproduction sys-tem of digital impressions with an intraoral scanner and a 3D printer: A preliminary study. Scientific Reports, 9, 20052. https://doi.org/10.1038/s41598-019-56624-3

Pang, Q., Wang, H., & Xu, Z. S. (2016). Probabilistic linguistic linguistic term sets in multi-attribute group decision making. Information Sciences, 369, 128–143. https://doi.org/10.1016/j.ins.2016.06.021

Pavan, L. I., Bourguignon, G. A., Soderini, H., & Ubertazzi, E. P. (2021). Vaginoplasty: Modificated McIndoe using xenograft and a tailored 3D-printer mold. International Urogynecology Journal, 32, 2283–2285. https://doi.org/10.1007/s00192-021-04689-y

Prabhu, S. R., & Ilangkumaran, M. (2019a). Decision making methodology for the selection of 3D printer under fuzzy environment. International Journal of Materials & Product Technology, 59(3), 239–252. https://doi.org/10.1504/IJMPT.2019.102935

Prabhu, S. R., & Ilangkumaran, M. (2019b). Selection of 3D printer based on FAHP integrated with GRA-TOPSIS. International Journal of Ma-terials & Product Technology, 58(2/3), 155–177. https://doi.org/10.1504/IJMPT.2019.097667

Stanujkic, D., Zavadskas, E. K., Keshavarz Ghorabaee, M., & Turskis, Z. (2017). An extension of the EDAS method based on the use of interval grey numbers. Studies in Informatics and Control, 26(1), 5–12. https://doi.org/10.24846/v26i1y201701

Wang, P., Wang, J., & Wei, G. W. (2019). EDAS method for multiple criteria group decision making under 2-tuple linguistic neutrosophic envi-ronment. Journal of Intelligent & Fuzzy Systems, 37(2), 1597–1608. https://doi.org/10.3233/JIFS-179223

Wei, C., Wu, J., Guo, Y., & Wei, G. (2021a). Green supplier selection based on CODAS method in probabilistic uncertain linguistic environment. Technological and Economic Development of Economy, 27(3), 530–549. https://doi.org/10.3846/tede.2021.14078

Wei, G., Lin, R., Lu, J., Wu, J., & Wei, C. (2021b). The generalized dice similarity measures for probabilistic uncertain linguistic MAGDM and its application to location planning of electric vehicle charging stations. International Journal of Fuzzy Systems. https://doi.org/10.1007/s40815-021-01084-z

Wei, G., Wei, C., & Guo, Y. (2021c). EDAS method for probabilistic linguistic multiple attribute group decision making and their application to green supplier selection. Soft Computing, 25, 9045–9053. https://doi.org/10.1007/s00500-021-05842-x

Yi, J. H., Duling, M. G., Bowers, L. N., Knepp, A. K., LeBouf, R. F., Nurkiewicz, T. R., Ranpara, A., Luxton, T., Martin, S. B., Burns, D. A., Peloquin, D. M., Baumann, E. J., Virji, M. A., & Stefaniak, A. B. (2019). Particle and organic vapor emissions from children’s 3-D pen and 3-D printer toys. Inhalation Toxicology, 31(13–14), 432–445. https://doi.org/10.1080/08958378.2019.1705441