Share:


Evaluating ESG corporate performance using a new neutrosophic AHP-TOPSIS based approach

    Javier Reig-Mullor   Affiliation
    ; Ana Garcia-Bernabeu   Affiliation
    ; David Pla-Santamaria Affiliation
    ; Marisa Vercher-Ferrandiz Affiliation

Abstract

Corporate sustainability reports’ credibility of environmental, social, and governance (ESG) information has received a significant focus of attention in the businesses landscape. Over the last years, various methodologies and multicriteria approaches have been developed to assess the ESG performance of companies. To consider the uncertainty that arises from imprecision and subjectivity in evaluating ESG criteria, this paper proposes to develop a novel hybrid methodology that combines AHP and TOPSIS techniques under a neutrosophic environment. We test the suggested proposal through a real case study of the leading companies in the oil and gas industry. Moreover, we conduct a sensitivity analysis for evaluating any discrepancies in the ranking due to using different fuzzy numbers and weighting vectors.


First published online 05 July 2022

Keyword : fuzzy sets, triangular neutrosophic numbers, possibility measures, sustainability reporting, greenwashing, ESG

How to Cite
Reig-Mullor, J., Garcia-Bernabeu, A., Pla-Santamaria, D., & Vercher-Ferrandiz, M. (2022). Evaluating ESG corporate performance using a new neutrosophic AHP-TOPSIS based approach. Technological and Economic Development of Economy, 28(5), 1242–1266. https://doi.org/10.3846/tede.2022.17004
Published in Issue
Sep 12, 2022
Abstract Views
1672
PDF Downloads
1405
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018). An extension of neutrosophic AHP-SWOT analysis for strategic planning and decision-making. Symmetry, 10(4). https://doi.org/10.3390/sym10040116

Abdel-Basset, M., Mohamed, M., Zhou, Y., & Hezam, I. (2017). Multi-criteria group decision making based on neutrosophic analytic hierarchy process. Journal of Intelligent and Fuzzy Systems, 33(6), 4055–4066. https://doi.org/10.3233/JIFS-17981

Ahmad, F. (2021). Interactive neutrosophic optimization technique for multiobjective programming problems: An application to pharmaceutical supply chain management. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03997-2

Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E., & Kaklauskas, A. (2021). Evaluating life cycle of buildings using an integrated approach based on quantitative-qualitative and simplified best-worst methods (QQM-SBWM). Sustainability, 13, 4487. https://doi.org/10.3390/su13084487

Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Set and Systems, 20, 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

Brans, J. P., Mareschal, B., & Vincke, P. (1984). Prométhée: a new family of outranking methods in multicriteria analysis. In J. P. Brans (Ed.), Operational research’24 (pp. 477–490). North-Holland.

Broumi, S., Nagarajan, D., Bakali, A., Talea, M., Smarandache, F., & Lathamaheswari, M. (2019). The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment. Complex & Intelligent Systems, 5(4), 391–402. https://doi.org/10.1007/s40747-019-0092-5

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. https://doi.org/10.1016/0165-0114(85)90090-9

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2

Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability. Management of Environmental Quality: An International Journal, 31(2), 385–405. https://doi.org/10.1108/MEQ-12-2019-0284

Dahl, R. (2010). Greenwashing: Do you know what you´re buying? Environmental Health Perspectives, 118(6), A246–A252. https://doi.org/10.1289/ehp.118-a246

Dahlsrud, A. (2008). How corporate social responsibility is defined: An analysis of 37 definitions. Corporate Social Responsibility and Environmental Management, 15(1), 1–13. https://doi.org/10.1002/csr.132

Das, S., Roy, B. K., Kar, M. B., Kar, S., & Pamučar, D. (2020). Neutrosophic fuzzy set and its application in decision making. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5017–5029. https://doi.org/10.1007/s12652-020-01808-3

De Bakker, P. I. W., Yelensky, R., Pe’Er, I., Gabriel, S. B., Daly, M. J., & Altshuler, D. (2005). Efficiency and power in genetic association studies. Nature Genetics, 37(11), 1217–1223. https://doi.org/10.1038/ng1669

Deli, I., & Subas, Y. (2014). Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Set Systems, 2(1), 1–13.

Deli, I., & Şubaş, Y. (2017). A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. International Journal of Machine Learning and Cybernetics, 8. https://doi.org/10.1007/s13042-016-0505-3

Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. 1999 IEEE International Fuzzy Systems Conference Proceedings. FUZZ-IEEE ’99. IEEE. https://doi.org/10.1109/FUZZY.1999.793038

Deveci, M., Erdogan, N., Cali, U., Stekli, J., & Zhong, S. (2021). Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA. Engineering Applications of Artificial Intelligence, 103(February), 104311. https://doi.org/10.1016/j.engappai.2021.104311

Escrig-Olmedo, E., Rivera-Lirio, J. M., Muñoz-Torres, M. J., & Fernández-Izquierdo, M. Á. (2017). Integrating multiple ESG investors’ preferences into sustainable investment: A fuzzy multicriteria methodological approach. Journal of Cleaner Production, 162, 1334–1345. https://doi.org/10.1016/j.jclepro.2017.06.143

Garg, H., & Nancy. (2020). Multiple attribute decision making based on immediate probabilities aggregation operators for single-valued and interval neutrosophic sets. Journal of Applied Mathematics and Computing, 63(1–2), 619–653. https://doi.org/10.1007/s12190-020-01332-9

Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57

Giri, B. C., Molla, M. U., & Biswas, P. (2020). TOPSIS Method for Neutrosophic Hesitant Fuzzy Multi-Attribute Decision Making. Informatica, 31(1), 35–63. https://doi.org/10.15388/20-INFOR392

Hwang, C., & Yoon, K. (1981). Multiple attributes decision making: Methods and applications. Springer. https://doi.org/10.1007/978-3-642-48318-9

Ilinitch, A. Y., Soderstrom, N. S., & E. Thomas, T. (1998). Measuring corporate environmental performance. Journal of Accounting and Public Policy, 17(4), 383–408. https://doi.org/https://doi.org/10.1016/S0278-4254(98)10012-1

Junaid, M., Xue, Y., Syed, M. W., Li, J. Z., & Ziaullah, M. (2020). A neutrosophic ahp and topsis framework for supply chain risk assessment in automotive industry of Pakistan. Sustainability, 12(1). https://doi.org/10.3390/SU12010154

Kamran, H. W., Pantamee, A. A., Patwary, A. K., Ghauri, T. A., Long, P. D., & Nga, D. Q. (2021). Measuring the association of environmental, corporate, financial, and social CSR: Evidence from fuzzy TOPSIS nexus in emerging economies. Environmental Science and Pollution Research International, 28(9), 10749–10762. https://doi.org/10.1007/s11356-020-11336-4

Keshavarz-Ghorabaee, M. (2021). Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach. Scientific Reports, 11(1), 19461. https://doi.org/10.1038/s41598-021-98698-y

Keshavarz-Ghorabaee, M., Amiri, M., Hashemi-Tabatabaei, M., & Ghahremanloo, M. (2021a). Sustainable public transportation evaluation using a novel hybrid method based on fuzzy BWM and MABAC. The Open Transportation Journal, 15(1), 31–46. https://doi.org/10.2174/1874447802115010031

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for Multi-criteria decision-making. Informatica, 29(2), 265–280. https://doi.org/10.15388/Informatica.2018.167

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021b). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4). https://doi.org/10.3390/sym13040525

Khatter, K. (2020). Neutrosophic linear programming using possibilistic mean. Soft Computing, 24(22), 16847–16867. https://doi.org/10.1007/s00500-020-04980-y

Kilic, H. S., Yurdaer, P., & Aglan, C. (2021). A leanness assessment methodology based on neutrosophic DEMATEL. Journal of Manufacturing Systems, 59, 320–344. https://doi.org/10.1016/j.jmsy.2021.03.003

Li, X., & Huang, X. (2019). The three-way decisions method based on theory of reliability with SV-triangular neutrosophic numbers. Symmetry, 11(7). https://doi.org/10.3390/sym11070888

Liern, V., & Pérez-Gladish, B. (2018). Ranking corporate sustainability: A flexible multidimensional approach based on linguistic variables. International Transactions in Operational Research, 25(3), 1081–1100. https://doi.org/https://doi.org/10.1111/itor.12469

Lu, K., Liao, H., & Zavadskas, E. K. (2021). An overview of fuzzy techniques in supply chain management: Bibliometrics, methodologies, applications and future directions. Technological and Economic Development of Economy, 27(2), 402–458. https://doi.org/10.3846/tede.2021.14433

Luo, S., Pedrycz, W., & Xing, L. (2021). Pricing of satellite image data products: Neutrosophic fuzzy pricing approaches under different game scenarios. Applied Soft Computing, 102, 107106. https://doi.org/10.1016/j.asoc.2021.107106

Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications – Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003

Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing Journal, 5(1), 23–33. https://doi.org/10.1016/j.asoc.2004.04.001

Nafei, A. H., Javadpour, A., Nasseri, H., & Yuan, W. (2021). Optimized score function and its application in group multiattribute decision making based on fuzzy neutrosophic sets. International Journal of Intelligent Systems, 36(12), 7522–7543. https://doi.org/10.1002/int.22597

Opricovic, S. (1998). Visekriterijumska optimizacija sistema u gradjevinarstvu [Multicriteria optimization of civil engineering systems]. Faculty of Civil Engineering, University of Belgrade, Belgrade (in Serbian).

Roy, B. (1996). Multicriteria methodology for decision aiding (Vol. 12). Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-2500-1

Roy, P. K., & Shaw, K. (2022). Modelling a sustainable credit score system (SCSS) using BWM and fuzzy TOPSIS. International Journal of Sustainable Development & World Ecology, 29(3), 195–208. https://doi.org/10.1080/13504509.2021.1935360

Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill Inc.

Saaty, T., & Vargas, L. (2006). Decision making with the analytic network process. Economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 95). Springer. https://doi.org/10.1007/0-387-33987-6

Smarandache, F. (1999). A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic. American Research Press.

Stankevičiene, J., & Mencaite, E. (2012). The evaluation of bank performance using a multicriteria decision making model: A case study on Lithuanian commercial banks. Technological and Economic Development of Economy, 18(1), 189–205. https://doi.org/10.3846/20294913.2012.668373

Tavana, M., Zareinejad, M., Di Caprio, D., & Kaviani, M. A. (2016). An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Applied Soft Computing Journal, 40, 544–557. https://doi.org/10.1016/j.asoc.2015.12.005

Turksen, I. B. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1

van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1), 229–241. https://doi.org/10.1016/S0165-0114(83)80082-7

van Marrewijk, M. (2003). European corporate sustainability framework. International. Journal of Business Performance Measurement, 5(2/3), 121–132. https://doi.org/10.1504/IJBPM.2003.003253

Wan, S. P., Li, D. F., & Rui, Z. F. (2013). Possibility mean, variance and covariance of triangular intuitionistic fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 24(4), 847–858. https://doi.org/10.3233/IFS-2012-0603

Wei, G., Wu, J., Guo, Y., Wang, J., & Wei, C. (2021). An extended copras model for multiple attribute group decision making based on single-valued neutrosophic 2-tuple linguistic environment. Technological and Economic Development of Economy, 27(2), 353–368. https://doi.org/10.3846/tede.2021.14057

Wulf, I., Niemöller, J., & Rentzsch, N. (2014). Development toward integrated reporting, and its impact on corporate governance: A two-dimensional approach to accounting with reference to the German two-tier system. Journal of Management Control, 25, 135–164. https://doi.org/10.1007/s00187-014-0200-z

Ye, J. (2017). Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method. Informatica, 28(2), 387–402. https://doi.org/10.15388/Informatica.2017.135

Yoon, K., & Hwang, C.-L. (1981). Multiple attribute decision making. Springer-Verlag.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8, 199–249. https://doi.org/10.1007/978-1-4684-2106-4_1

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810